Commutativity up to a Factor of Bounded Operators in Complex Hilbert Space
نویسنده
چکیده
We explore commutativity up to a factor for bounded operators in a complex Hilbert space.
منابع مشابه
extend numerical radius for adjointable operators on Hilbert C^* -modules
In this paper, a new definition of numerical radius for adjointable operators in Hilbert -module space will be introduced. We also give a new proof of numerical radius inequalities for Hilbert space operators.
متن کاملCommutativity, Comonotonicity, and Choquet Integration of Self-adjoint Operators∗
In this work we propose a definition of comonotonicity for elements ofB (H)sa, i.e., bounded self-adjoint operators defined over a complex Hilbert space H. We show that this notion of comonotonicity coincides with a form of commutativity. Intuitively, comonotonicity is to commutativity as monotonicity is to bounded variation. We also define a notion of Choquet expectation for elements of B (H)s...
متن کاملSOME PROPERTIES OF FUZZY HILBERT SPACES AND NORM OF OPERATORS
In the present paper we define the notion of fuzzy inner productand study the properties of the corresponding fuzzy norm. In particular, it isshown that the Cauchy-Schwarz inequality holds. Moreover, it is proved thatevery such fuzzy inner product space can be imbedded in a complete one andthat every subspace of a fuzzy Hilbert space has a complementary subspace.Finally, the notions of fuzzy bo...
متن کامل$G$-Frames for operators in Hilbert spaces
$K$-frames as a generalization of frames were introduced by L. Gu{a}vruc{t}a to study atomic systems on Hilbert spaces which allows, in a stable way, to reconstruct elements from the range of the bounded linear operator $K$ in a Hilbert space. Recently some generalizations of this concept are introduced and some of its difference with ordinary frames are studied. In this paper, we give a new ge...
متن کاملG-Frames, g-orthonormal bases and g-Riesz bases
G-Frames in Hilbert spaces are a redundant set of operators which yield a representation for each vector in the space. In this paper we investigate the connection between g-frames, g-orthonormal bases and g-Riesz bases. We show that a family of bounded operators is a g-Bessel sequences if and only if the Gram matrix associated to its denes a bounded operator.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008